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Motivation

• NASA and private companies 
seek to establish an enduring 
human presence in cis-lunar 
space, and this vision is aided by:
• Efficient low-thrust propulsion.

• Stable orbits that can be 
maintained at low-cost for long 
time spans.

• Thus, low-thrust transfers 
between stable periodic orbits 
will also be advantageous.
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Deep Space Gateway Concept

Asteroid Robotic Redirect Mission Concept
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Moon

Motivation

• Invariant manifold structures offer 
efficient paths into and out of 
periodic orbits.

• Therefore, manifolds may assist 
low-thrust transfer design.

• However, stable and near-stable 
periodic orbits do not possess 
manifolds that can assist with 
trajectory design.

• Thus, additional techniques for low-
thrust trajectory design are 
required
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Motivation

• Collocation is a method for 
numerically integrating ordinary 
differential equations.

• This method has been 
successfully employed to 
compute low-thrust trajectories 
when little intuition is available 
for constructing an initial guess.
• Grebow, Ozimek, and Howell, 2010
• Herman, 2015
• Parrish, et al., 2016
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Motivation
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Goal: Develop additional 
techniques for conducting low-
thrust trajectory design that 
leverage collocation to compute 
optimal trajectories when little 
intuition is available for the 
construction of an initial guess. 

Sample Application: Low-thrust 
transfer design between stable 
and near-stable periodic orbits in 
the Earth-Moon system.
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Background

• The circular restricted three-body 
problem (CR3BP) is employed for 
initial trajectory design.
• Gravitational interaction of 

primaries may be leveraged to 
compute low-energy trajectories.

• Avoids complexity of ephemeris 
model:
• Time dependence 

• Additional gravitational perturbations
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Background
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• A low-thrust engine 
representative of current 
technological capabilities is 
employed for all transfers
• 𝑚0 = 500 𝑘𝑔

• 𝐼𝑠𝑝 = 2000 𝑠𝑒𝑐

• 𝑇𝑚𝑎𝑥 = 100 𝑚𝑁

• These trajectory design 
techniques are applicable to a 
wide-range of engine parameters



Background

• A variety of stable or near-stable 
periodic orbits are available in 
the Circular Restricted Three-
Body Problem (CR3BP) 
• Distant Retrograde Orbits (DRO)

11

Lunar DRO Family



Background

• A variety of stable or near-stable 
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𝐿4 SPO Family
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Background

• Low-thrust trajectory design is a 
continuous optimal control 
problem, where common objectives 
are maximization of final mass or 
minimization of time of flight.

• Direct transcription is a robust 
method for solving optimal control 
problems using collocation.
• Canon, Cullum, and Polak, 1970

• Hargraves and Paris, 1987

• Betts and Huffman, 1997
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𝐿2 Halo to 𝐿1 Halo Orbit Transfer



Background

• Two software packages that 
implement direct transcription 
for low-thrust trajectory design 
are employed:
• Collocation with Optimization for 

Low-Thrust (COLT)
• MColl

• MColl enables low-thrust 
trajectory design within MONTE 
(Mission Analysis Operation and 
Navigation Toolkit Environment)
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𝐿2 Halo to 𝐿1 Halo Orbit Transfer
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Trajectory Design with Direct 
Transcription Steps:

1. Construct initial guess with 
trajectory stacking technique



Background

183 Revolution 3 Revolution

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

C

Trajectory Stacking:



Background

193 Revolution 3 Revolution

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Position and Velocity 
Discontinuity

CC

Trajectory Stacking:



Background

203 Revolution 3 Revolution

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

C

Trajectory Stacking:



Background

213 Revolution 3 Revolution

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Trajectory Stacking:



Background

223 Revolution 3 Revolution

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Trajectory Stacking:
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Trajectory Design with Direct 
Transcription Steps:

1. Stack revolutions on departure 
and arrival orbits to construct 
initial guess.

2. Converge feasible solution.

Feasible Transfer



Background
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Trajectory Design with Direct 
Transcription Steps:

1. Stack revolutions on departure 
and arrival orbits to construct 
initial guess.

2. Converge feasible solution.

3. Pass feasible solution to 
optimization algorithm

Optimal Transfer
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Trajectory Design with Direct 
Transcription Steps:

1. Stack revolutions on departure 
and arrival orbits to construct 
initial guess.

2. Converge feasible solution.

3. Pass feasible solution to 
optimization algorithm

Feasible Transfer
𝑚𝑓/𝑚0 = 490/500

Optimal Transfer
𝑚𝑓/𝑚0 = 492/500



Background
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Trajectory Design with Direct 
Transcription Steps:

1. Stack revolutions on departure 
and arrival orbits to construct 
initial guess.

2. Converge feasible solution.

3. Pass feasible solution to 
optimization algorithm

Feasible Thrust Profile
𝑚𝑓/𝑚0 = 490/500

Optimal Thrust Profile
𝑚𝑓/𝑚0 = 492/500



Background
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Trajectory Design with Direct 
Transcription Steps:

1. Stack revolutions on departure 
and arrival orbits to construct 
initial guess.

2. Converge feasible solution.

3. Pass feasible solution to 
optimization algorithm

4. Transition optimal CR3BP transfer 
to a high-fidelity model

Transfer in a Full Ephemeris Model
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Sample Applications – Trajectory Stacking

31Initial Guess

Transfer Scenario: 
𝐷𝑅𝑂 → 𝐿4 𝑆𝑃𝑂

• Could facilitate placement of or 
access to a waystation located at 
a triangular Lagrange point

• Departure and arrival orbits 
selected to possess a similar 
Jacobi constant value



Sample Applications – Trajectory Stacking
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Transfer Scenario: 
𝐷𝑅𝑂 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 3 𝑅𝑒𝑣 + 𝐿4 𝑆𝑃𝑂 2 𝑅𝑒𝑣

• Transfer Time: 134.8 𝑑𝑎𝑦𝑠

• Feasible: 𝑚𝑓/𝑚0 = Τ478 500 𝑘𝑔

• Optimal: 𝑚𝑓/𝑚0 = 482/500 𝑘𝑔

Optimal Transfer – Rotating Frame



Sample Applications – Trajectory Stacking

33Optimal Transfer – Inertial Frame

Transfer Scenario: 
𝐷𝑅𝑂 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 3 𝑅𝑒𝑣 + 𝐿4 𝑆𝑃𝑂 2 𝑅𝑒𝑣

• Transfer Time: 134.8 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = Τ482 500 𝑘𝑔



Sample Applications – Trajectory Stacking

34Transfer in a Full Ephemeris Model

Transfer Scenario: 
𝐷𝑅𝑂 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 3 𝑅𝑒𝑣 + 𝐿4 𝑆𝑃𝑂 2 𝑅𝑒𝑣

• Transfer Time: 134.8 𝑑𝑎𝑦𝑠



Sample Applications – Trajectory Stacking

35Transfer in a Full Ephemeris Model

Transfer Scenario: 
𝐷𝑅𝑂 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 3 𝑅𝑒𝑣 + 𝐿4 𝑆𝑃𝑂 2 𝑅𝑒𝑣

• Transfer Time: 134.8 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = Τ482 500 𝑘𝑔
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Sample Applications – Trajectory Stacking
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Transfer Scenario: 
𝐿2 𝑁𝑅𝐻𝑂 → 𝐷𝑅𝑂

• Could facilitate transfer of space 
station or communications 
satellite between two types of 
lunar orbits

• Orbits have different Jacobi 
constant values and very 
different orbital planes.

Initial Guess



Sample Applications – Trajectory Stacking
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Transfer Scenario: 
𝐿2 𝑁𝑅𝐻𝑂 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 3 𝑅𝑒𝑣

• Transfer Time: 46.7 𝑑𝑎𝑦𝑠

• Feasible: 𝑚𝑓/𝑚0 = Τ483 500 𝑘𝑔

• Optimal: 𝑚𝑓/𝑚0 = Τ486 500 𝑘𝑔

Optimal Transfer – Rotating Frame



Sample Applications – Trajectory Stacking

39Transfer in a Full Ephemeris Model

Transfer Scenario: 
𝐿2 𝑁𝑅𝐻𝑂 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 3 𝑅𝑒𝑣

• Transfer Time: 46.7 𝑑𝑎𝑦𝑠



Sample Applications – Trajectory Stacking

40Transfer in a Full Ephemeris Model

Transfer Scenario: 
𝐿2 𝑁𝑅𝐻𝑂 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 3 𝑅𝑒𝑣

• Transfer Time: 46.7 𝑑𝑎𝑦𝑠

• 𝑚𝑓/𝑚0 = Τ486 500 𝑘𝑔
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Sample Applications – Orbit Chaining

433 Revolution 3 Revolution

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Discontinuity

CC

Orbit Chaining:



Sample Applications – Orbit Chaining

443 Revolution 3 Revolution

Discontinuity

CC

Orbit Chaining:

TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 𝝉𝒊𝒏𝒕 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Discontinuity



TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 𝝉𝒊𝒏𝒕 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Sample Applications – Orbit Chaining

453 Revolution 3 Revolution

CC

Orbit Chaining:

Discontinuity Discontinuity



TOF = 3 𝑟𝑒𝑣 ∗ 𝜏0 + 𝝉𝒊𝒏𝒕 + 3 𝑟𝑒𝑣 ∗ 𝜏𝑓

Sample Applications – Orbit Chaining

463 Revolution 3 Revolution

CC

Use Natural Dynamical 
Structures to Reduce 
Initial Discontinuity

Orbit Chaining:

Discontinuity Discontinuity



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝐷𝑅𝑂 → ? ? ? → 𝐿4 𝑆𝑃𝑂

Departure and Arrival Orbits



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

3:2 Resonant Orbit Family



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

• Select resonant orbit with similar 
Jacobi constant value

Jacobi Constant vs. Orbit Index



Sample Applications – Orbit Chaining

50Initial Guess

Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

• Select resonant orbit with similar 
Jacobi constant value

• Trim resonant orbit near 
departure and insertion points



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 1 𝑅𝑒𝑣 + 3: 2 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐿4 𝑆𝑃𝑂 1 𝑅𝑒𝑣

• Transfer Time: 121.3 𝑑𝑎𝑦𝑠

• Feasible: 𝑚𝑓/𝑚0 = Τ492 500𝑘𝑔

• Optimal: 𝑚𝑓/𝑚0 = 497/500 𝑘𝑔

Optimal Transfer



Sample Applications – Orbit Chaining

52

Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 1 𝑅𝑒𝑣 + 3: 2 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐿4 𝑆𝑃𝑂 1 𝑅𝑒𝑣

• Transfer Time: 121.3 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = 497/500 𝑘𝑔

Optimal Transfer – Inertial Frame



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 1 𝑅𝑒𝑣 + 3: 2 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐿4 𝑆𝑃𝑂 1 𝑅𝑒𝑣

• Transfer Time: 121.3 𝑑𝑎𝑦𝑠

Transfer in a Full Ephemeris Model



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝐷𝑅𝑂 → 3: 2 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 1 𝑅𝑒𝑣 + 3: 2 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐿4 𝑆𝑃𝑂 1 𝑅𝑒𝑣

• Transfer Time: 121.3 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = 497/500 𝑘𝑔

Transfer in a Full Ephemeris Model
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Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → ? ? ? → 𝐷𝑅𝑂

Departure and Arrival Orbits



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

2:3 Resonant Orbit Family



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• Select resonant orbit with similar 
Jacobi constant value

Jacobi Constant vs. Orbit Index



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• Select resonant orbit with similar 
Jacobi constant value

• Trim resonant orbit near 
departure and insertion points

Initial Guess



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• Select resonant orbit with similar 
Jacobi constant value

• Trim resonant orbit near 
departure and insertion points

Initial Guess – Zoom View



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 96.8 𝑑𝑎𝑦𝑠

• Feasible: 𝑚𝑓/𝑚0 = Τ485 500𝑘𝑔

• Optimal: 𝑚𝑓/𝑚0 = 487/500 𝑘𝑔

Optimal Transfer



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 +

2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 96.8 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = 487/500 𝑘𝑔

Optimal Transfer



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 +

2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 96.8 𝑑𝑎𝑦𝑠

Transfer in a Full Ephemeris Model



Sample Applications – Orbit Chaining
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 +

2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 96.8 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = 487/500 𝑘𝑔

Transfer in a Full Ephemeris Model
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Sample Applications – Orbit Chaining

Transfer Type CR3BP Model
Ephemeris 

Model

𝑇𝑂𝐹 (𝑑𝑎𝑦𝑠) 𝑚𝑓 (𝑘𝑔) 𝑚𝑓 (𝑘𝑔)

𝐿2 Halo → 𝐿1 Halo 47.5 491.98 491.73

DRO → 𝐿4 SPO 134.8 482.03 *463.83

DRO → 3:2 Resonant → 𝐿4 SPO 121.3 497.04 *472.75

NRHO → DRO 46.7 486.14 488.33

NRHO → 2:3 Resonant → DRO 96.8 487.15 495.00

67

*Ephemeris transfer not optimized



Sample Applications – Orbit Chaining

Transfer Type CR3BP Model
Ephemeris 

Model

𝑇𝑂𝐹 (𝑑𝑎𝑦𝑠) 𝑚𝑓 (𝑘𝑔) 𝑚𝑓 (𝑘𝑔)

𝐿2 Halo → 𝐿1 Halo 47.5 491.98 491.73

DRO → 𝐿4 SPO 134.8 482.03 *463.83

DRO → 3:2 Resonant → 𝐿4 SPO 121.3 497.04 *472.75

NRHO → DRO 46.7 486.14 488.33

NRHO → 2:3 Resonant → DRO 96.8 487.15 495.00

68

*Ephemeris transfer not optimized
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Sample Applications – Deep Space Gateway
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• Now using spacecraft with space 
station parameters:
• 𝑚0 = 30,000 𝑘𝑔

• 𝐼𝑠𝑝 = 3000 𝑠𝑒𝑐

• Expected Thrust/Weight ratio:
• 𝑇/𝑊 = 1 × 10−6 to 6 × 10−6

• 𝑇𝑚𝑎𝑥 = 0.29 − 1.77 𝑁

Optimal Transfer with 𝑇𝑚𝑎𝑥 = 2.5 𝑁



Sample Applications – Deep Space Gateway
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Sample Applications – Deep Space Gateway
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 136.24 𝑑𝑎𝑦𝑠

• Feasible: 𝑚𝑓/𝑚0 = Τ29.66 30𝑚𝑇

• Optimal: 𝑚𝑓/𝑚0 = 29.69/30 𝑚𝑇

Optimal Transfer with 𝑇𝑚𝑎𝑥 = 1.7 𝑁



Sample Applications – Deep Space Gateway
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 136.24 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = 29.69/30 𝑚𝑇

Optimal Transfer with 𝑇𝑚𝑎𝑥 = 1.7 𝑁



Sample Applications – Deep Space Gateway
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Transfer Scenario: 
𝑁𝑅𝐻𝑂 → 2: 3 𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 2: 3 𝑅𝑒𝑠 1 𝑅𝑒𝑣 +

𝐷𝑅𝑂 1 𝑅𝑒𝑣

• Transfer Time: 136.24 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = 29.69/30 𝑚𝑇

Optimal Transfer with 𝑇𝑚𝑎𝑥 = 1.7 𝑁
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Sample Applications – Deep Space Gateway
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Transfer Scenario: 

• Can also continue optimal 
solutions with respect to 𝑇𝑚𝑎𝑥, 
𝑇𝑂𝐹, or Jacobi of departure and 
arrival orbits.

Final Mass vs. Maximum Thrust



Sample Applications – Deep Space Gateway
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Transfer Scenario: 

• Can also continue optimal 
solutions with respect to 𝑇𝑚𝑎𝑥, 
𝑇𝑂𝐹, or Jacobi of departure and 
arrival orbits.

Final Mass vs. Time of Flight
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Concluding Remarks

• Demonstrated techniques for conducting low-thrust trajectory design 
that leverage collocation to compute optimal trajectories.

• Showed how natural dynamical structures in the CR3BP may be 
“chained” together to construct an initial guess.

• Applied these strategies in a continuation process to compute a 
transfer for a space station sized vehicle.

• Future Work:
• Further develop orbit chaining technique 
• Explore application of these techniques to other scenarios where little 

information is available to construct an initial guess
• Improve efficiency of direct transcription algorithms
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Background

84

Feasible Transfer
𝑚𝑓/𝑚0 = 490/500

Optimal Transfer
𝑚𝑓/𝑚0 = 492/500



Sample Applications – Trajectory Stacking

85Optimal Thrust Profile

Transfer Scenario: 
𝐷𝑅𝑂 → 𝐿4 𝑆𝑃𝑂

• 𝐷𝑅𝑂 3 𝑅𝑒𝑣 + 𝐿4 𝑆𝑃𝑂 2 𝑅𝑒𝑣

• Transfer Time: 134.8 𝑑𝑎𝑦𝑠

• Optimal: 𝑚𝑓/𝑚0 = Τ482 500 𝑘𝑔



Background
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Feasible Transfer
𝑚𝑓/𝑚0 = 478/500

Optimal Transfer
𝑚𝑓/𝑚0 = 482/500
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Sample Applications – Trajectory Stacking

88Optimal Thrust Profile

Transfer Scenario: 
𝐿2 𝑁𝑅𝐻𝑂 → 𝐷𝑅𝑂

• 𝑁𝑅𝐻𝑂 1 𝑅𝑒𝑣 + 𝐷𝑅𝑂 3 𝑅𝑒𝑣

• Transfer Time: 46.7 𝑑𝑎𝑦𝑠

• 𝑚𝑓/𝑚0 = Τ486 500 𝑘𝑔



Background
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Feasible Transfer
𝑚𝑓/𝑚0 = 483/500

Optimal Transfer
𝑚𝑓/𝑚0 = 486/500



Sample Applications – Trajectory Stacking
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Transfer Scenario: 
𝑆𝑜𝑢𝑡ℎ𝑒𝑟𝑛 𝐿2 𝑁𝑅𝐻𝑂 → 𝐷𝑅𝑂

• Provides transfer options 
between a variety of lunar orbits 

𝑌𝑍 View 𝑋𝑌 View
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Background

92𝑛𝑖 Revolutions 𝑛𝑓 Revolutions

CCDiscontinuity Discontinuity

Intermediate Trajectory Arc


